
[Singh, 2(9): September, 2013]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

IJESRT
INTERNATIONAL JOURNA

A Technical Review on Web Application Security Vulnerabilities

Research scholar, In-Charge, Centre for Computer Science, Sri JNPG College(KKC), Lucknow(U.P.)

The web is an indispensable part of our lives. Every
retrieve information and communicate over the web. Although the web is convenient for many users because it
provides anytime, anywhere access to information and services, at
for miscreants who attack unsuspecting web users with the aim of
a significant rise in the number of web
increasing the security of web applications. An
an entrusted platform (e.g., a computer that
a web application. Solutions that have been
expensive) peripheral devices such as
aspects of client-side attacks (e.g., Trojan horses) against web applications and present
can be used by web applications to enable secure user input. We also conducted two usability studies to examine
whether the techniques that we propose are feasible.

Keywords:- Electronic Commerce, Security,

Web Application Security

The Web is the playground of 800 million
citizens, home to 100 million Web sites,
transporter of billions of dollars
International economies have become dependent
the Web as a global phenomenon. It’s not been long
since Web mail, message boards, chat
auctions, shopping; news, banking, and other Web
based software have become part of digital life.
Today, users hand over their names, addresses, social
security numbers, credit card information, phone
numbers, mother’s maiden name, and annual
date of birth, and sometimes even their favorite color
or name of their kindergarten teacher to receive
financial statements, tax records, or day trade stock.
And did I mention that roughly 8 out of 10
have serious security issues putting this data at risk?
Even the most secure systems are plagued by
security threats only recently identifi
Application Security, the term used to describe the
methods of securing web-based software.

The organizations that collect personal and
private information are responsible for prote
from prying eyes. Nothing less than corporate
reputation and personal identity is at stake.
as Web application security is and has been, we need
to think bigger. We’re beyond the relative

 ISSN: 2277
 Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology
[2407-2419]

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

A Technical Review on Web Application Security Vulnerabilities
Chandan Singh

Charge, Centre for Computer Science, Sri JNPG College(KKC), Lucknow(U.P.)
India

1sichandansingh@gmail.com
Abstract

The web is an indispensable part of our lives. Every day, millions of users purchase items, transfer money,
retrieve information and communicate over the web. Although the web is convenient for many users because it

access to information and services, at the same time, it has also become a prim
attack unsuspecting web users with the aim of making an easy profit. The last years have shown

the number of web-based attacks, highlighting the importance of techniques and tools for
applications. An important web security research problem is how

computer that has been compromised by malware) to securely transmit information to
have been proposed to date are mostly hardware-based and

expensive) peripheral devices such as smartcard readers and chip cards. In this paper, we discuss some common
side attacks (e.g., Trojan horses) against web applications and present two simple techniques

can be used by web applications to enable secure user input. We also conducted two usability studies to examine
whether the techniques that we propose are feasible.

Electronic Commerce, Security, Vulnerabilities, Scripting, Hacking.

The Web is the playground of 800 million
, home to 100 million Web sites, and

of billions of dollars every day.
International economies have become dependent on
the Web as a global phenomenon. It’s not been long
since Web mail, message boards, chat rooms,

king, and other Web-
of digital life.

Today, users hand over their names, addresses, social
card information, phone

and annual salary,
their favorite color

indergarten teacher to receive
nancial statements, tax records, or day trade stock.

And did I mention that roughly 8 out of 10 Web sites
have serious security issues putting this data at risk?

are plagued by new
security threats only recently identified as Web

term used to describe the
based software.

The organizations that collect personal and
private information are responsible for protecting it
from prying eyes. Nothing less than corporate

stake. As vital
as Web application security is and has been, we need

beyond the relative

annoyances of identity theft, script kiddy
defacements, and full-disclosure
sites are launched that control statewide power grids,
operate hydroelectric dams,
administer payroll for the majority of corporate
America, run corporate networks, and manage other
truly critical functions. Think of what a malicious
compromise of one of these systems could mean. It’s
hard to imagine an area of information security that’s
more important. Web applications have become the
easiest, most direct, and arguably the most exploited
route for system compromise.
everyone thought firewalls, SSL, intrusion detection
systems, network scanners, and passwords were the
answer to network security. Security professionals
borrowed from basic military strategy where you set
up a perimeter and defended it with
had. The idea was to allow the good guys in and keep
the bad guys out. For the most part, the strategy was
effective, that is until the Web and e
forever changed the landscape. E
firewalls to allow in Web (port 80 Hypertext Transfer
Protocol [HTTP] and 443 Hypertext Transfer
Protocol Secure sockets [HTTPS])

Essentially meaning you have to let in the
whole world and make sure they play nice.

ISSN: 2277-9655
Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology

ENCES & RESEARCH

A Technical Review on Web Application Security Vulnerabilities

Charge, Centre for Computer Science, Sri JNPG College(KKC), Lucknow(U.P.),

of users purchase items, transfer money,
retrieve information and communicate over the web. Although the web is convenient for many users because it

time, it has also become a prime target
easy profit. The last years have shown

techniques and tools for
important web security research problem is how to enable a user on

has been compromised by malware) to securely transmit information to
based and require (often

and chip cards. In this paper, we discuss some common
two simple techniques that

can be used by web applications to enable secure user input. We also conducted two usability studies to examine

annoyances of identity theft, script kiddy
disclosure antics. New Web

sites are launched that control statewide power grids,
dams, fill prescriptions,

administer payroll for the majority of corporate
America, run corporate networks, and manage other

Think of what a malicious
compromise of one of these systems could mean. It’s
hard to imagine an area of information security that’s
more important. Web applications have become the

arguably the most exploited
route for system compromise. Until recently

rewalls, SSL, intrusion detection
scanners, and passwords were the

answer to network security. Security professionals
borrowed from basic military strategy where you set

perimeter and defended it with everything you
The idea was to allow the good guys in and keep

most part, the strategy was
effective, that is until the Web and e-commerce

the landscape. E-commerce requires
walls to allow in Web (port 80 Hypertext Transfer

Protocol [HTTP] and 443 Hypertext Transfer
Protocol Secure sockets [HTTPS]) traffic.

Essentially meaning you have to let in the
whole world and make sure they play nice.

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

Seemingly overnight the Internet moved from
predominantly walled networks to a global
ecommerce bazaar. The perimeter became porous and
security administrators found themselves without any
way to protect against insecure Web applications.

Web developers are now responsible for
security as well as creating applications that fuel Web
business. Fundamental software design concepts have
had to change. Prior to this transformation, the
average piece of software was utilized by a relatively
small number of users. Developers now create
software that runs on Internet-accessible Web servers
to provide services for anyone, anywhere. The scope
and magnitude of their software delivery has
increased exponentially, and in so doing, the security
issues have also compounded. Now hundreds of
millions of users all over the globe have direct access
to corporate servers, any number of which could be
malicious adversaries. New terms such as cross-site
scripting, Structured Query Language (SQL)
injection, and a dozen of other new purely Web-
based attacks have to be understood and dealt with.

Web application security is a large topic

encompassing many disciplines, technologies, and
design concepts. Normally, the areas we’re interested
in are the software layers from the Web server on up
the vulnerability stack as illustrated in Figure
1.1.This includes application servers such as JBoss,
IBM WebSphere, BEA WebLogic, and a thousand
others. Then we progress in the commercial and open
source Web applications like PHP Nuke, Microsoft
Outlook Web Access, and SAP. And after all that,
there are the internal custom Web applications that
organizations develop for themselves .This is the lay
of the land when it comes to Web application
security. One of the biggest threats that Web
application developers have to understand and know
how to mitigate is XSS attacks. While XSS is a
relatively small part of the Web application security
field, it possible represents the most dangerous, with
respect to the typical Internet user. One simple bug
on a Web application can result in a compromised
browser through which an attacker can steal data;
take over a user’s browsing experience, and more.

Ironically, many people do not understand the
dangers of XSS vulnerabilities and how they can be
and are used regularly to attack victims. This book’s
main goal is to educate readers through a series of
discussions, examples, and illustrations as to the real
threat and significant impact that one XSS can have.

Review from Literature

No language can prevent insecure code, although
there are language features which could aid or hinder
a security-conscious developer [1]. Insecure software
is already undermining our financial, healthcare,
defence, energy, and other critical infrastructure. As
our digital infrastructure gets increasingly complex
and interconnected the difficulty of achieving
application security increases exponentially. We can
no longer afford to tolerate relatively simple security
problems like those presented below. The
vulnerabilities [2] explained in this paper are:

1. Remote code execution
2. SQL injection
3. Format string vulnerabilities
4. Cross Site Scripting (XSS)
5. Ajax security: Are AJAX Applications

Vulnerable
6. Cross Site Scripting – XSS – The

Underestimated Exploit
7. Google Hacking
8. Directory Traversal Attacks

Remote Code Execution

In computer security, arbitrary code
execution is used to describe an attacker's ability to
execute any commands of the attacker's choice on a
target machine or in a target process. It is commonly
used in arbitrary code execution vulnerability to
describe a software bug that gives an attacker a way
to execute arbitrary code. A program that is designed
to exploit such a vulnerability is called an arbitrary
code execution exploit. Most of these vulnerabilities
allow the execution of machine code and most
exploits therefore inject and execute shell code to
give an attacker an easy way to manually run
arbitrary commands. The ability to trigger arbitrary
code execution from one machine on another
(especially via a wide-area network such as the
Internet) is often referred to as remote code
execution.

It is the worst effect a bug can have because
it allows an attacker to completely take over the
vulnerable process. From there the attacker can
potentially take complete control over the machine
the process is running on. Arbitrary code execution
vulnerabilities are commonly exploited
by malware to run on a computer without the owner's

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

consent or by an owner to run homebrew software on
a device without the manufacturer's consent.
Arbitrary code execution is commonly achieved
through control over the program counter (also
known as the instruction pointer) of a running
process. The instruction pointer points to the next
instruction in the process that will be executed.
Control over the value of the instruction pointer
therefore gives control over which instruction is
executed next. In order to execute arbitrary code,
many exploits inject code into the process (for
example by sending input to it which gets stored in
an input buffer) and use a vulnerability to change the
instruction pointer to have it point to the injected
code. The injected code will then automatically get
executed. This type of attack exploits the fact
that Von Neumann architecture computers do not
make a general distinction between code and data, so
that malicious code can be camouflaged as harmless
input data. Many newer CPUs have mechanisms to
make this harder, such as a no-execute bit.
Once the invader can execute arbitrary code directly
on the OS, there is often an attempt at a privilege
escalation exploit in order to gain additional control.
This may involve the kernel itself or an account such
as Administrator, SYSTEM, or root. With or without
this enhanced control, exploits have the potential to
do severe damage or turn the computer into
a zombie - but privilege escalation helps with hiding
the attack from the legitimate administrator of the
system. An arbitrary remote code execution with
privilege escalation vulnerability in widely-deployed
software is thus the worst vulnerability sub-type of
them all. If bugs of this kind become known, fixes
are usually made available within a few hours.

Affected

• Symantec Backup Exec CP Server (BE CPS)11.0,
12.0, 12.5 All

• Symantec Veritas NetBackup (NBU) with
NetBackup Operations Manager (NOM) installed
6.0.x, 6.5.x Windows, Solaris

• Symantec Veritas NetBackup RealTime Protection
6.5 All

• Symantec Veritas Backup Reporter (VBR) 6.0.x,
6.2.x, 6.5.x, 6.6 Windows, Solaris

• Symantec Veritas Storage Foundation (SF) 3.5
onwards All

• Symantec Veritas Storage Foundation for Windows
(SFW) ?? All

• Symantec Veritas Storage Foundation for High
Availability (SFHA) 3.5 onwards All

• Symantec Veritas Storage Foundation Manager
(SFM) 1.0, 1.1, 1.1.1Ux, 1.1.1Win, 2.0 All

• Symantec Veritas Cluster Server Management
Console (VCSMC) 5.0, 5.1, 5.5 All

• Symantec Veritas Storage Foundation Cluster File
System (SFCFS) 3.5 (HP-UX), 4.0, 4.1, 5.0 (AIX,
HP-UX, Linux, Solaris) Various

• Symantec Veritas Cluster Server Traffic Director ??
All

• Symantec Veritas Application Director (VAD) 1.x,
1.1 PE, 1.1 PE-RPx All

• Symantec Veritas Cluster Server One (VCSOne) 2.x
All

• Symantec Veritas Storage Foundation for Oracle
(SFO) 4.1 (HP-UX, Solaris)

• 5.0 (AIX, HP-UX, Linux, Solaris)
• 5.0.1 (HP-UX) Various
• Symantec Veritas Storage Foundation for DB2 4.1

(Solaris, Linux)
• 5.0 (Solaris, AIX, Linux) Various
• Symantec Veritas Storage Foundation for Sybase 4.1,

5.0 Solaris
• Symantec Veritas Command Central Storage (CCS)

4.3, 5.0 GA, 5.0 MP1, 5.0 MP1 RP1-RP6, 5.1 All
• Symantec Veritas Command Central Enterprise

Reporter (CC-ER) 5.0 GA, 5.0 MP1, 5.0 MP1RP1,
5.1 All

• Symantec Veritas Command Central Storage Change
Manager (CC-SCM) 5.1 All

• Symantec Veritas Virtual Infrastructure (VxVI) 1.0,
1.0SP1 Linux

• Symantec Veritas MicroMeasure 5.0 All
• NOTE:
• Only the versions listed above are affected.
• NetBackup is affected only if NetBackup Operations

Manager (NOM) is installed.
• PureDisk is not vulnerable in the default

configuration

SQL Injection

This is a hacking method that allows an
unauthorized attacker to access a database server. It is
facilitated by a common coding blunder: the program
accepts data from a client and executes SQL queries
without first validating the client’s input. The
attacker is then free to extract, modify, add, or delete
content from the database. In some circumstances, he
may even penetrate past the database server and into
the underlying operating system. Hackers typically
test for SQL injection vulnerabilities by sending the
application input that would cause the server to
generate an invalid SQL query[4]. If the server then
returns an error message to the client, the attacker
will attempt to reverse-engineer portions of the
original SQL query using information gained from
these error messages. The typical administrative

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

safeguard is simply to prohibit the display of
database server error messages. Regrettably, that’s
not sufficient. If your application does not return
error messages, it may still be susceptible to “blind”
SQL injection7 attacks.

 In the following example, assume that a web site is
being used to mount an attack on the database. If you
think about a typical SQL statement, you might think
of something like:
SELECT ProductName, QuantityPerUnit, UnitPrice
FROM Products
WHERE ProductName LIKE 'G%'
The objective of the attacker is to inject their own
SQL into the statement that the application will use to
query the database. If, for instance, the above query
was generated from a search feature on a web site,
then they user may have inserted the "G" as their
query. If the server side code then inserts the user
input directly into the SQL statement, it might look
like this:

string sql = "SELECT ProductName,
QuantityPerUnit, UnitPrice "+
 "FROM Products " +
 "WHERE ProductName LIKE
'"+this.search.Text+"%';
SqlDataAdapter da = new SqlDataAdapter(sql,
DbCommand);
da.Fill(productDataSet);
This is all fine if the data is valid, but what if the user
types something unexpected? What happens if the
user types:
' UNION SELECT name, type, id FROM sysobjects;-
-
Note the initial apostrophe; it closes the opening
quote in the original SQL statement. Also, note the
two dashes at the end; that starts a comment, which
means that anything left in the original SQL
statement is ignored.
Now, when the attacker views the page that was
meant to list the products the user has searched for,
they get a list of all the names of all the objects in the
database and the type of object that they are. From
this list, the attacker can see that there is a table
called Users. If they take note of the id for
the Users table, they could then inject the following:
' UNION SELECT name, '', length FROM
syscolumns
WHERE id = 1845581613;--
This would give them a list of the column names in
the Users table. Now they have enough information
to get access to a list of users, passwords, and if they
have admin privileges on the web site.

Prevention
• Encrypt sensitive data.
• Access the database using an account with the least

privileges necessary.
• Install the database using an account with the least

privileges necessary.
• Ensure that data is valid.
• Do a code review to check for the possibility of

second-order attacks.
• Use parameterised queries.
• Use stored procedures.
• Re-validate data in stored procedures.
• Ensure that error messages give nothing away about

the internal architecture of the application or the
database.

Format String Vulnerabilities
Format String Attack

Format String Attacks[5] alter the flow of an
application by using string formatting library features
to access other memory space. Vulnerabilities occur
when user-supplied data are used directly as
formatting string input for certain C/C++ functions
(e.g. fprintf, printf, sprintf, setproctitle, syslog).
If an attacker passes a format string consisting of
printf conversion characters (e.g. "%f", "%p", "%n",
etc.) as a parameter value to the web application, they
may:

• Execute arbitrary code on the server
• Read values off the stack
• Cause segmentation faults / software crashes

 Format String attacks are related to other attacks in
the Threat Classification: Buffer
Overflows and Integer Overflows. All three are based
in their ability to manipulate memory or its
interpretation in a way that contributes to an
attacker's goal.

 Example
Let's assume that a web application has a parameter
emailAddress, dictated by the user. The application
prints the value of this variable by using the printf
function:

 printf(emailAddress);

If the value sent to the emailAddress parameter
contains conversion characters, printf will parse the
conversion characters and use the additionally
supplied corresponding arguments. If no such
arguments actually exist, data from the stack will be
used in accordance with the order expected by the
printf function.

[Singh, 2(9): September, 2013]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

The possible uses of the Format String Attacks
such a case can be:

• Read data from the stack:
If the output stream of the printf function is presented
back to the attacker, he may read values on the stack
by sending the conversion character "%x" (one or
more times).

• Read character strings from the process'
memory:

If the output stream of the printf function is presented
back to the attacker, he can read character strings at
arbitrary memory locations by using the "%s"
conversion character (and other conversion characters
in order to reach specific locations).

• Write an integer to locations in the process'
memory:

By using the "%n" conversion character, an attacker
may write an integer value to any location in
memory. (e.g. overwrite important program flags that
control access privileges, or overwrite return
addresses on the stack, etc.)

Cross Site Scripting – XSS – The
Underestimated Exploit
What is Cross Site Scripting?

XSS is an attackusing a browser side
scripting language (usually JavaScript)
of the attacker is to make the malicious script appear
to be from the site being attacked, so the user's
browser can't tell the script being executed is not
meant to be aprt of the site they are viewing. This is
usually accomplished by an attacker by submitting
specially crafted values into the target site's URL or
web forms, or anywhere user generated content is
displayed on the site. Users can fall into an XSS
attack primarily in two ways:

1. Tricking a user to click on a link, via having
them view an email, or having them view
another site under attacker control. This could
be as benign as a forum where image tags are
allowed, and an attacker posts something like

2. Creating an XSS attack and storing it on the
target site, such as in a forum post, profile, or
other method. This type of attack may also be
self-propagating, creating an XSS worm.

XSS arises in a variety of ways. Code is planted on a
site or in a link a user will be tricked into clic
causing the XSS exploit to execute on the client's
browser. Cross site scripting attempts can be
notoriously hard to detect as they may take many
forms, such as normal human readable text, or

 ISSN: 2277
 Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology
[2407-2419]

The possible uses of the Format String Attacks[6] in

If the output stream of the printf function is presented
back to the attacker, he may read values on the stack

on character "%x" (one or

Read character strings from the process'

If the output stream of the printf function is presented
back to the attacker, he can read character strings at
arbitrary memory locations by using the "%s"

character (and other conversion characters

Write an integer to locations in the process'

By using the "%n" conversion character, an attacker
may write an integer value to any location in

overwrite important program flags that
control access privileges, or overwrite return

The

XSS is an attackusing a browser side
language (usually JavaScript)[7]. The goal

of the attacker is to make the malicious script appear
to be from the site being attacked, so the user's
browser can't tell the script being executed is not
meant to be aprt of the site they are viewing. This is
sually accomplished by an attacker by submitting

specially crafted values into the target site's URL or
web forms, or anywhere user generated content is
displayed on the site. Users can fall into an XSS

k on a link, via having
them view an email, or having them view
another site under attacker control. This could
be as benign as a forum where image tags are
allowed, and an attacker posts something like

oring it on the
target site, such as in a forum post, profile, or
other method. This type of attack may also be

propagating, creating an XSS worm.
XSS arises in a variety of ways. Code is planted on a
site or in a link a user will be tricked into clicking,
causing the XSS exploit to execute on the client's
browser. Cross site scripting attempts can be
notoriously hard to detect as they may take many
forms, such as normal human readable text, or

specially encoded characters used to trick attempts to
detect it.

There are two broad attack surfaces which
must be protected from XSS. The first is the users
browser environment, and any JavaScript or other
code which is executed by the browser, and the
second is server side. Browser attacks are executed
via variables like the http referrer (page the user was
last on and clicked from), or other http type methods
such as document.location or document.URL. These
variables are supplied by the user's browser, and not
the site the page was requested from, so the site
less control. If these values are written into the
document at the user side, then the page may be
modified with an XSS attack after it has been
delivered to the user, as opposed to server
where the attack is rendered by the server prior to
being sent. In-Body attacks are less likely (in some
cases impossible) to prevent with server
checking, and should be prevented directly in the
client-side code instead

 In a typical XSS attack the hacker infects a
legitimate web page with his ma
script. When a user visits this web page the script is
downloaded to his browser and executed. There are
many slight variations to this theme, however all XSS
attacks follow this pattern, which is depicted in the
diagram below.

A basic example of XSS is when a malicious
user injects a script in a legitimate shopping site URL
which in turn redirects a user to a fake but identical
page. The malicious page would run a script to
capture the cookie of the user browsing the shopping
site, and that cookie gets sent to the malicious user
who can now hijack the legitimate user’s session.
Although no real hack has been performed against
the shopping site, XSS has still exploited a scripting
weakness in the page to snare a user and take
command of his session. A trick which often is used
to make malicious URLs less obvious is to have the
XSS part of the URL encoded in HEX (or other
encoding methods). This will look harmless to the
user who recognizes the URL he is familiar with, and

ISSN: 2277-9655
Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology

specially encoded characters used to trick attempts to

There are two broad attack surfaces which
must be protected from XSS. The first is the users
browser environment, and any JavaScript or other
code which is executed by the browser, and the
second is server side. Browser attacks are executed

iables like the http referrer (page the user was
last on and clicked from), or other http type methods
such as document.location or document.URL. These
variables are supplied by the user's browser, and not
the site the page was requested from, so the site has
less control. If these values are written into the
document at the user side, then the page may be
modified with an XSS attack after it has been
delivered to the user, as opposed to server-side XSS,
where the attack is rendered by the server prior to

Body attacks are less likely (in some
cases impossible) to prevent with server-side input
checking, and should be prevented directly in the

In a typical XSS attack the hacker infects a
legitimate web page with his malicious client-side
script. When a user visits this web page the script is
downloaded to his browser and executed. There are
many slight variations to this theme, however all XSS
attacks follow this pattern, which is depicted in the

A basic example of XSS is when a malicious

user injects a script in a legitimate shopping site URL
which in turn redirects a user to a fake but identical
page. The malicious page would run a script to
capture the cookie of the user browsing the shopping

te, and that cookie gets sent to the malicious user
who can now hijack the legitimate user’s session.
Although no real hack has been performed against
the shopping site, XSS has still exploited a scripting
weakness in the page to snare a user and take

and of his session. A trick which often is used
to make malicious URLs less obvious is to have the
XSS part of the URL encoded in HEX (or other
encoding methods). This will look harmless to the
user who recognizes the URL he is familiar with, and

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

simply disregards and following ‘tricked’ code which
would be encoded and therefore inconspicuous.
Site owners are always confident, but so are
hackers!

Without going into complicated technical
details, one must be aware of the various cases which
have shown that XSS can have serious consequences
when exploited on a vulnerable web application.
Many site owners dismiss XSS on the grounds that it
cannot be used to steal sensitive data from a back-end
database. This is a common mistake because the
consequences of XSS against a web application and
its customers have been proven to be very serious,
both in terms of application functionality and
business operation. An online business project cannot
afford to lose the trust of its present and future
customers simply because nobody has ever stepped
forward to prove that their site is really vulnerable to
XSS exploits. Ironically, there are stories of site
owners who have boldly claimed that XSS is not
really a high-risk exploit. This has often resulted in a
public challenge which hackers are always itching to
accept, with the site owner having to later deal with a
defaced application and public embarrassment.
The repercussions of XSS

Analysis of different cases which detail XSS
exploits teaches us how the constantly changing web
technology is nowhere close to making applications
more secure. A thorough web search will reveal
many stories of large-scale corporation web sites
being hacked through XSS exploits, and the reports
of such cases always show the same recurring
consequences as being of the severe kind.
Exploited XSS is commonly used to achieve the
following malicious results:

• Identity theft
• Accessing sensitive or restricted information
• Gaining free access to otherwise paid for content
• Spying on user’s web browsing habits
• Altering browser functionality
• Public defamation of an individual or corporation
• Web application defacement
• Denial of Service attacks

Any site owner with a healthy level of
integrity would agree that none of the above can
really be considered us frivolous or unimportant
impacts on a vulnerable site. Security flaws in high-
profile web sites have allowed hackers to obtain
credit card details and user information which
allowed them to perform transactions in their name.
Legitimate users have been frequently tricked into
clicking a link which redirects them to a malicious
but legitimate-looking page which in turn captures all
their details and sends them straight to the hacker.
This example might not sound as bad as hacking into

a corporate database; however it takes no effort to
cause site visitors or customers to lose their trust in
the application’s security which in turn can result in
liability and loss of business.
XSS Attack Vectors

Internet applications today are not static
HTML pages. They are dynamic and filled with ever
changing content. Modern web pages pull data from
many different sources. This data is amalgamated
with your own web page and can contain simple text,
or images, and can also contain HTML tags such as
<p> for paragraph, for image and <script> for
scripts. Many times the hacker will use the
‘comments’ feature of your web page to insert a
comment that contains a script. Every user who views
that comment will download the script which will
execute on his browser, causing undesirable
behaviour. Something as simple as a Facebook post
on your wall can contain a malicious script, which if
not filtered by the Facebook servers will be injected
into your Wall and execute on the browser of every
person who visits your Facebook profile.
If you would like a deeper discussion on the different
XSS attack vectors and examples of what they look
like you should refer to the following article, which
explains XSS, it's attack vectors and some more
examples of what an attack looks like.
A practical example of XSS on an Acunetix test
site.

The following example is not a hacking
tutorial. It is just a basic way to demonstrate how
XSS can be used to control and modify the
functionality of a web page and to re-design the way
the page processes its output. The practical use of the
example may be freely debated; however anyone may
see the regular reports which describe how advanced
XSS is used to achieve very complex results, most
commonly without being noticed by the user. I
encourage also those individuals with no hacking
knowledge to try the following example, I am sure
you will find it interesting.
1. Load the following link in your
browser: http://testasp.vulnweb.com/search.asp, you
will notice that the page is a simple page with an
input field for running a search

[Singh, 2(9): September, 2013]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

2. Try to insert the following code into the search
field, and notice how a login form will be displayed
on the page:
Please login with the form below before
proceeding:

Please login with the form
below before proceeding:<form
action="destination.asp"><table><tr><td>Login:</td
><td><input type=text length=20
name=login></td></tr><tr><td>Password:</td><td>
<input type=text length=20
name=password></td></tr></table><input
type=submit value=LOGIN></form>, then simply hit
the search button after inserting the code.

Through the XSS flaw on the page, it has been
possible to create a FAKE login form which can
convince gather a user’s credentials. As seen in step
2, the code contains a section which mentions
“destination.asp”. That is where a hacker can decide
where the FAKE login form will send the user’s log
in details for them to be retrieved and used
maliciously.
A hacker can also inject this code by passing it
around via the browser’s address bar as follows:
http://testasp.vulnweb.com/Search.asp?tfSearch=%3
Cbr%3E%3Cbr%3EPlease+login+with+
the+form+below+before+proceeding%3A%3C
form+action%3D%22test.asp%22%3E%3C
table%3E%3Ctr%3E%3Ctd%3ELogin%3A%3C%2F

 ISSN: 2277
 Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology
[2407-2419]

2. Try to insert the following code into the search
field, and notice how a login form will be displayed

Please login with the form below before

Please login with the form

action="destination.asp"><table><tr><td>Login:</td

name=login></td></tr><tr><td>Password:</td><td>

name=password></td></tr></table><input
then simply hit

the search button after inserting the code.

Through the XSS flaw on the page, it has been
possible to create a FAKE login form which can

ce gather a user’s credentials. As seen in step
2, the code contains a section which mentions
“destination.asp”. That is where a hacker can decide
where the FAKE login form will send the user’s log-
in details for them to be retrieved and used

A hacker can also inject this code by passing it
around via the browser’s address bar as follows:
http://testasp.vulnweb.com/Search.asp?tfSearch=%3
Cbr%3E%3Cbr%3EPlease+login+with+
the+form+below+before+proceeding%3A%3C
form+action%3D%22test.asp%22%3E%3C

n%3A%3C%2F

td%3E%3Ctd%3E%3Cinput+type%3D
text+
length%3D20+name%3Dlogin%3E%3C%2Ftd%3E
%3C%2Ftr%3E%3Ctr%3E%3C
td%3EPassword%3A%3C%2Ftd%3E%3Ctd%3E%3
Cinput
+type%3Dtext+length%3D20
+name%3Dpassword%3E%3C%2Ftd%3E%3C%2Ft
r%3E%3C%2Ftable%3E%3Cinput
+type%3Dsubmit+value
%3DLOGIN%3E%3C%2Fform%3E

This will create the same result on the page, showing
how XSS can be used in several different ways to
achieve the same result. After the hacker retrieves the
user’s log-in credentials, he can easily cause th
browser to display the search page as it was
originally and the user would not even realize that he
has just been fooled. This example may also be seen
in use in all those spam emails we all receive. It is
very common to find an email in your inbox sayin
how a certain auctioning site suspects that another
individual is using your account maliciously, and it
then asks you to click a link to validate your identity.
This is a similar method which directs the
unsuspecting user to a FAKE version of the
auctioning site, and captures the user’s log
credentials to then send them to the hacker.
Why wait to be hacked?

The observation which can be made when
new stories of the latest hacks are published is that
the sites which belong to the large brands and
corporations are hacked in exactly the same way as
those sites owned by businesses on a much smaller
budget. This clearly shows how lack of security is not
a matter of resources, but it is directly dependant on
the lack of awareness among businesses of all size.
Statistically, 42% of web applications which request
security audits are vulnerable to XSS, which is
clearly the most recurring high-risk exploit among all
the applications tested. The effort to raise awareness
about how easy it is for an expert hacker to

ISSN: 2277-9655
Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology

td%3E%3Ctd%3E%3Cinput+type%3D

length%3D20+name%3Dlogin%3E%3C%2Ftd%3E

td%3EPassword%3A%3C%2Ftd%3E%3Ctd%3E%3

+name%3Dpassword%3E%3C%2Ftd%3E%3C%2Ft
r%3E%3C%2Ftable%3E%3Cinput

%3DLOGIN%3E%3C%2Fform%3E

This will create the same result on the page, showing
how XSS can be used in several different ways to
achieve the same result. After the hacker retrieves the

in credentials, he can easily cause the
browser to display the search page as it was
originally and the user would not even realize that he
has just been fooled. This example may also be seen
in use in all those spam emails we all receive. It is
very common to find an email in your inbox saying
how a certain auctioning site suspects that another
individual is using your account maliciously, and it
then asks you to click a link to validate your identity.
This is a similar method which directs the
unsuspecting user to a FAKE version of the

ning site, and captures the user’s log-in
credentials to then send them to the hacker.

The observation which can be made when
new stories of the latest hacks are published is that
the sites which belong to the large brands and

ations are hacked in exactly the same way as
those sites owned by businesses on a much smaller
budget. This clearly shows how lack of security is not
a matter of resources, but it is directly dependant on
the lack of awareness among businesses of all size.
Statistically, 42% of web applications which request
security audits are vulnerable to XSS, which is

risk exploit among all
the applications tested. The effort to raise awareness
about how easy it is for an expert hacker to exploit a

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

vulnerable application does not seem to be going too
far. It is still very common to see the “We’ll see
when I get hacked” mentality still lingering among
site owners who finally risk losing a lot of money and
also the trust of their customers. Anybody with the
interest to research this matter will see how even
individuals claiming to be security experts feel
comfortable to state that XSS is over-rated and
cannot really be used to achieve serious results on a
web application. However further research will also
prove that statistical figures speak for themselves,
and those same statistics keep growing at a rate
which will eventually overcast the claims of those
incredulous “experts”.
Preventing Cross Site Scripting Attacks

The purpose of this article is define Cross
Site Scripting attacks and give some practical
examples. Preventing XSS attacks requires diligence
from the part of the programmers and the necessary
security testing. You can learn more about preventing
cross-site scripting attacks here.
Scan your site for XSS with the Trial Edition of
Acunetix WVS.

Acunetix Web Vulnerability Scanner Trial
Edition offers the functionality for anyone who wants
to test their own application for Cross Site Scripting.
Acunetix encourages all site owners and developers
to visithttp://www.acunetix.com/vulnerability-
scanner/download/ and to download the Trial Edition
of Acunetix WVS. This Trial Edition will scan any
web application for XSS and it will also reveal all the
essential information related to it, such as the
vulnerability location and remediation techniques.
Scanning for XSS is normally a quick exercise
(depending on the size of the application) and indeed
can surprise all those who really wish to see where
their web site stands from a security point of view.
Web Site Security Center: Check & Implement
Web Site Security
Web security is the most overlooked aspect of
securing data. Acunetix Web Site Security Center
offers a series of articles and whitepapers on web
security, a web application security blog and up to
date news on web security. Also, information on the
latest website security concepts and the most
important web attacks, such as SQL injection &
Cross site scripting.
In addition to explaining how website security attacks
work, the Web Security Center also provides
information on how to find and fix these web security
vulnerabilities.
Directory Traversal Attacks
What is a Directory Traversal Attack?
Properly controlling access to web content is crucial
for running a secure web server. Directory Traversal

is an HTTP exploit which allows attackers to access
restricted directories and execute commands outside
of the web server's root directory.
Web servers provide two main levels of security
mechanisms:

• Access Control Lists (ACLs)
• Root directory

An Access Control List is used in the authorization
process. It is a list which the web server's
administrator uses to indicate which users or groups
are able to access, modify or execute particular files
on the server, as well as other access rights.

The root directory is a specific directory on

the server file system in which the users are confined.
Users are not able to access anything above this root.
For example: the default root directory of IIS on
Windows is C:\Inetpub\wwwroot and with this setup,
a user does not have access to C:\Windows but has
access to C:\Inetpub\wwwroot\news and any other
directories and files under the root directory
(provided that the user is authenticated via the
ACLs).

The root directory prevents users from
accessing sensitive files on the server such as
cmd.exe on Windows platforms and the passwd file
on Linux/UNIX platforms.

This vulnerability can exist either in the web
server software itself or in the web application code.
In order to perform a directory traversal attack, all an
attacker needs is a web browser and some knowledge
on where to blindly find any default files and
directories on the system.

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

What an Attacker can do if your Website is
Vulnerable

With a system vulnerable to Directory
Traversal, an attacker can make use of this
vulnerability to step out of the root directory and
access other parts of the file system. This might give
the attacker the ability to view restricted files, or even
more dangerous, allowing the attacker to execute
powerful commands on the web server which can
lead to a full compromise of the system.
Depending on how the website access is set up, the
attacker will execute commands by impersonating
himself as the user which is associated with "the
website". Therefore it all depends on what the
website user has been given access to in the system.
Example of a Directory Traversal Attack via Web
Application Code

In web applications with dynamic pages,
input is usually received from browsers through GET
or POST request methods. Here is an example of a
GET HTTP request URL:
http://test.webarticles.com/show.asp?view=oldarchiv
e.html

With this URL, the browser requests the
dynamic page show.asp from the server and with it
also sends the parameter "view" with the value of
"oldarchive.html". When this request is executed on
the web server, show.asp retrieves the file
oldarchive.htm from the server's file system, renders
it and then sends it back to the browser which
displays it to the user. The attacker would assume
that show.asp can retrieve files from the file system
and sends this custom URL:
http://test.webarticles.com/show.asp?view=../../../../../
Windows/system.ini

This will cause the dynamic page to retrieve
the file system.ini from the file system and display it
to the user. The expression ../ instructs the system to
go one directory up which is commonly used as an
operating system directive. The attacker has to guess
how many directories he has to go up to find the
Windows folder on the system, but this is easily done
by trial and error.
Example of a Directory Traversal Attack via Web
Server

Apart from vulnerabilities in the code, even
the web server itself can be open to directory
traversal attacks. The problem can either be
incorporated into the web server software or inside
some sample script files left available on the server.

The vulnerability has been fixed in the latest
versions of web werver software, but there are web
servers online which are still using older versions of
IIS and Apache which might be open to directory
traversal attacks. Even tough you might be using a

web werver software version that has fixed this
vulnerability, you might still have some sensitive
default script directories exposed which are well
known to hackers.
For example, a URL request which makes use of the
scripts directory of IIS to traverse directories and
execute a command can be:
http://server.com/scripts/..%5c../Windows/System32/
cmd.exe?/c+dir+c:\

The request would return to the user a list of
all files in the C:\ directory by executing the cmd.exe
command shell file and run the command "dir c:\" in
the shell. The %5c expression that is in the URL
request is a web server escape code which is used to
represent normal characters. In this case %5c
represents the character "\".

Newer versions of modern web server
software check for these escape codes and do not let
them through. Some older versions however, do not
filter out these codes in the root directory enforcer
and will let the attackers execute such commands.
How to Check for Directory Traversal
Vulnerabilities

The best way to check whether your web
site & applications are vulnerable to Directory
Traversal attacks is by using a Web Vulnerability
Scanner. A Web Vulnerability Scanner crawls your
entire website and automatically checks for Directory
Traversal vulnerabilities. It will report the
vulnerability and how to easily fix it.. Besides
Directory Traversal vulnerabilities a web application
scanner will also check for SQL injection, Cross site
scripting & other web vulnerabilities.
Acunetix Web Vulnerability Scanner scans for SQL
Injection, Cross Site Scripting, Google Hacking and
many more vulnerabilities. Download the trial
version of Acunetix WVS.
Preventing Directory Traversal Attacks

First of all, ensure you have installed the
latest version of your web server software, and sure
that all patches have been applied.
Secondly, effectively filter any user input. Ideally
remove everything but the known good data and filter
meta characters from the user input. This will ensure
that only what should be entered in the field will be
submitted to the server.
Check if your Website is Vulnerable to Attack
with Acunetix Web Vulnerability Scanner

Acunetix Web Vulnerability Scanner
ensures website security by automatically checking
for SQL Injection, Cross Site Scripting, Directory
Traversal and other vulnerabilities. It checks
password strength on authentication pages and
automatically audits shopping carts, forms, dynamic
content and other web applications. As the scan is

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

being completed, the software produces detailed
reports that pinpoint where vulnerabilities exist.

Ajax security: Are AJAX Applications
Vulnerable to Hack Attacks?
AJAX and JavaScript: The Technologies
Explained
Fuelled by the increased interest in Web 2.0, AJAX
(Asynchronous JavaScript Technology and XML) is
attracting the attention of businesses all round the
globe.

One of the main reasons for the increasing
popularity of AJAX is the scripting language used –
JavaScript (JS) which allows for a number of
advantages including: dynamic forms to include
built-in error checking, calculation areas on pages,
user interaction for warnings and getting
confirmations, dynamically changing background and
text colours or "buttons", reading URL history and
taking actions based on it, open and control windows,
providing different documents or parts based on user
request (i.e., framed vs. non-framed).
AJAX is not a technology; rather, it is a collection of
technologies each providing robust foundations when
designing and developing web applications:

• XHTML or HTML and Cascading Style Sheets
(CSS) providing the standards for representing
content to the user.

• Document Object Model (DOM) that provides the
structure to allow for the dynamic representation of
content and related interaction. The DOM exposes
powerful ways for users to access and manipulate
elements within any document.

• XML and XSLT that provide the formats for data to
be manipulated, transferred and exchanged between
server and client.

• XML HTTP Request: The main disadvantages of
building web applications is that once a particular
webpage is loaded within the user’s browser, the
related server connection is cut off. Further browsing
(even) within the page itself requires establishing
another connection with the server and sending the
whole page back even though the user might have
simply wanted to expand a simple link. XML HTTP
Request allows asynchronous data retrieval or
ensuring that the page does not reload in its entirety
each time the user requests the smallest of changes.

• JavaScript (JS) is the scripting language that unifies
these elements to operate effectively together and
therefore takes a most significant role in web
applications.
As such, AJAX is meant to increase interactivity,
speed, and usability. The technologies have prompted
a richer and friendly experience for the user as web
applications are designed to imitate ‘traditional’

desktop applications including Google Docs and
Spreadsheets, Google Maps and Yahoo! Mail.
At the start of a web session, instead of loading the
requested webpage, an AJAX engine written in JS is
loaded. Acting as a “middleman”, this engine resides
between the user and the web server acting both as a
rendering interface and as a means of communication
between the client browser and server.

The difference which this functionality
brings about is instantly noticeable. When sending a
request to a web server, one notices that individual
components of the page are updated independently
(asynchronous) doing away with the previous need to
wait for a whole page to become active until it is
loaded (synchronous).

Imagine webmail – previously, reading
email involved a variety of clicks and the sending and
retrieving of the various frames that made up the
interface just to allow the presentation of the various
emails of the user. This drastically slowed down the
user’s experience. With asynchronous transfer, the
AJAX application completely eliminates the “start-
stop-start-stop” nature of interaction on the web –
requests to the server are completely transparent to
the user.

Another noticeable benefit is the relatively
faster loading of the various components of the site
which was requested. This also leads to a significant
reduction in bandwidth required per request since the
web page does not need to reload its complete
content.

Other important benefits brought about by
AJAX coded applications include: insertion and/or
deletion of records, submission of web forms,
fetching search queries, and editing category trees -
performed more effectively and efficiently without
the need to request the full HTML of the page each
time.
AJAX Vulnerabilities
Although a most powerful set of technologies,
developers must be aware of the potential security
holes and breeches to which AJAX applications have
(and will) become vulnerable.
According to Pete Lindstrom, Director of Security
Strategies with the Hurwitz Group, Web applications
are the most vulnerable elements of an organization’s
IT infrastructure today. An increasing number of
organizations (both for-profit and not-for-profit)
depend on Internet-based applications that leverage
the power of AJAX. As this group of technologies
becomes more complex to allow the depth and
functionality discussed, and, if organizations do not
secure their web applications, then security risks will
only increase.

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

Increased interactivity within a web application
means an increase of XML, text, and general HTML
network traffic. This leads to exposing back-end
applications which might have not been previously
vulnerable, or, if there is insufficient server-side
protection, to giving unauthenticated users the
possibility of manipulating their privilege
configurations.

There is the general misconception that in
AJAX applications are more secure because it is
thought that a user cannot access the server-side
script without the rendered user interface (the AJAX
based webpage). XML HTTP Request based web
applications obscure server-side scripts, and this
obscurity gives website developers and owners a
false sense of security – obscurity is not security.
Since XML HTTP requests function by using the
same protocol as all else on the web (HTTP),
technically speaking, AJAX-based web applications
are vulnerable to the same hacking methodologies as
‘normal’ applications.

Subsequently, there is an increase in session
management vulnerabilities and a greater risk of
hackers gaining access to the many hidden URLs
which are necessary for AJAX requests to be
processed.
Another weakness of AJAX is the process that
formulates server requests. The Ajax engine uses JS
to capture the user commands and to transform them
into function calls. Such function calls are sent in
plain visible text to the server and may easily reveal
database table fields such as valid product and user
IDs, or even important variable names, valid data
types or ranges, and any other parameters which may
be manipulated by a hacker.
With this information, a hacker can easily use AJAX
functions without the intended interface by crafting
specific HTTP requests directly to the server. In case
of cross-site scripting, maliciously injected scripts
can actually leverage the AJAX provided
functionalities to act on behalf of the user thereby
tricking the user with the ultimate aim of redirecting
his browsing session (e.g., phishing) or monitoring
his traffic.
JavaScript Vulnerabilities
Although many websites attribute their interactive
features to JS, the widespread use of such technology
brings about several grave security concerns.

In the past, most of these security issues
arose from worms either targeting mailing systems or
exploiting Cross Site Scripting (XSS) weaknesses of
vulnerable websites. Such self-propagating worms
enabled code to be injected into websites with the
aim of being parsed and/or executed by Web

browsers or e-mail clients to manipulate or simply
retrieve user data.

As web-browsers and their technological
capabilities continue to evolve, so does malicious use
reinforcing the old and creating new security
concerns related to JS and AJAX. This technological
advancement is also occurring at a time when there is
a significant shift in the ultimate goal of the hacker
whose primary goal has changed from acts of
vandalism (e.g., website defacement) to theft of
corporate data (e.g., customer credit card details) that
yield lucrative returns on the black market.

XSS worms will become increasingly
intelligent and highly capable of carrying out
dilapidating attacks such as widespread network
denial of service attacks, spamming and mail attacks,
and rampant browser exploits. It has also been
recently discovered that it is possible to use JS to
map domestic and corporate networks, which
instantly makes any devices on the network (print
servers, routers, storage devices) vulnerable to
attacks.

Ultimately such sophisticated attacks could
lead to pinpointing specific network assets to embed
malicious JS within a webpage on the corporate
intranet, or any AJAX application available for
public use and returning data.
The problem to date is that most web scanning tools
available encounter serious problems auditing web
pages with embedded JS. For example, client-side JS
require a great degree of manual intervention (rather
than automation).
Summary and Conclusions
The evolution of web technologies is heading in a
direction which allows web applications to be
increasingly efficient, responsive and interactive.
Such progress, however, also increases the threats
which businesses and web developers face on a daily
basis.

With public ports 80 (HTTP) and 443
(HTTPS) always open to allow dynamic content
delivery and exchange, websites are at a constant risk
to data theft and defacement, unless they are audited
regularly with a reliable web application scanner. As
the complexity of technology increases, website
weaknesses become more evident and vulnerabilities
more grave.

The advent of AJAX applications has raised
considerable security issues due to a broadened threat
window brought about by the very same technologies
and complexities developed. With an increase in
script execution and information exchanged in
server/client requests and responses, hackers have
greater opportunity to steal data thereby costing
organizations thousands of dollars in lost revenue,

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

severe fines, diminished customer trust and
substantial damage to your organization's reputation
and credibility.
The only solution for effective and efficient security
auditing is a vulnerability scanner which automates
the crawling of websites to identify weaknesses.
However, without an engine that parses and executes
JavaScript, such crawling is inaccurate and gives
website owners a false sense of security. Read about
the JavaScript engine of Acunetix.

Google Hacking
What is Google Hacking?
Google hacking is the term used when a hacker tries
to find exploitable targets and sensitive data by using
search engines. The Google Hacking Database
(GHDB) is a database of queries that identify
sensitive data. Although Google blocks some of the
better known Google hacking queries, nothing stops a
hacker from crawling your site and launching the
Google Hacking Database queries directly onto the
crawled content.
More information about Google hacking can be
found
on: http://www.informit.com/articles/article.aspx?p=
170880.
What a Hacker can do if your Website is
Vulnerable
Information that the Google Hacking Database
identifies:

• Advisories and server vulnerabilities
• Error messages that contain too much information
• Files containing passwords
• Sensitive directories
• Pages containing logon portals
• Pages containing network or vulnerability data such

as firewall logs.
How to Check for Google Hacking Vulnerabilities
The easiest way to check whether your web site &
applications have Google hacking vulnerabilities, is
to use a Web Vulnerability Scanner. A Web
Vulnerability Scanner scans your entire website and
automatically checks for pages that are identified by
Google hacking queries. (Note: Your web
vulnerability scanner must be able to launch Google
hacking queries).
Acunetix Web Vulnerability Scanner includes an
offline copy of the Google Hacking Database
(GHDB), allowing to identify pages which can be
exploited using search engines.
Preventing Google Hacking Attacks
Verify the all pages identified by Google hacking
queries. Since these pages generally provide
information which should not be found on your web
site, you should generally remove such pages from

your site. If these pages are required by your site,
arrange the page so that it is not indexed by search
engines and arrange the wording so that it is not easy
to detect by Google hacking queries.

Email Injection
Description

This script is possibly vulnerable to Email
injection attacks. Email injection is a security
vulnerability that allows malicious users to send
email messages using someone else's server without
prior authorization. A malicious spammer could use
this tactic to send large numbers of messages
anonymously.
Impact
One of the input parameters of the [bold]mail[/bold]
function are not properly validated. Therefore, it's
possible for a remote attacker to inject custom SMTP
headers. For example, an attacker can inject
additional email recipients and use the script for
sending spam.
Recommendation
You need to restrict CR(0x13) and LF(0x10) from
the user input. Check references for more information
about fixing this vulnerability.
References
Email Injection
PHP mail() Header Injection Through Subject and To
Parameters
Which Vulnerabilities does Acunetix Web
Vulnerability Scanner Check for?
Acunetix Web Vulnerability Scanner automatically
checks for the following vulnerabilities,
among others:
Web Server Configuration Checks

• Checks for Web Servers Problems – Determines if
dangerous HTTP methods are enabled on the web
server (e.g. PUT, TRACE, DELETE)

• Verify Web Server Technologies
• Vulnerable Web Servers
• Vulnerable Web Server Technologies – such as “PHP

4.3.0 file disclosure and possible code execution.
Parameter Manipulation Checks

• Cross-Site Scripting (XSS)
• Cross-Site Request Forgery (CSRF)
• SQL Injection
• Code Execution
• Directory Traversal
• HTTP Parameter Pollution
• File Inclusion
• Script Source Code Disclosure
• CRLF Injection
• Cross Frame Scripting (XFS)
• PHP Code Injection

[Singh, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2407-2419]

• XPath Injection
• Path Disclosure

(Unix and Windows)
• LDAP Injection
• Cookie Manipulation
• Arbitrary File creation (AcuSensor Technology)
• Arbitrary File deletion (AcuSensor Technology)
• Email Injection (AcuSensor Technology)
• File Tampering (AcuSensor Technology)
• URL redirection
• Remote XSL inclusion
• DOM XSS
• MultiRequest Parameter Manipulation
• Blind SQL/XPath Injection
• Input Validation
• Buffer Overflows
• Sub-Domain Scanning

File Checks
• Checks for Backup Files or Directories - Looks for

common files (such as logs, application traces, CVS
web repositories)

• Cross Site Scripting in URI
• Checks for Script Errors

File Uploads
• Unrestricted File uploads Checks

Directory Checks
• Looks for Common Files (such as logs, traces, CVS)
• Discover Sensitive Files/Directories
• Discovers Directories with Weak Permissions
• Cross Site Scripting in Path and PHPSESSID Session

Fixation.
• Web Applications
• HTTP Verb Tampering

Text Search
• Directory Listings
• Source Code Disclosure
• Check for Common Files
• Check for Email Addresses
• Microsoft Office Possible Sensitive Information
• Local Path Disclosure
• Error Messages
• Trojan Shell Scripts (such as popular PHP shell

scripts like r57shell, c99shell etc)
Weak Password Checks

• Weak HTTP Passwords
• Authentication attacks
• Weak FTP passwords

Google Hacking Database (GHDB)

• Over 1200 Google Hacking Database Search Entries

Port Scanner and Network Alerts
• Finds All Open Ports on Servers
• Displays Network Banner of Port
• DNS Server Vulnerability: Open Zone Transfer
• DNS Server Vulnerability: Open Recursion
• DNS Server Vulnerability: Cache Poisoning
• Finds List of Writable FTP Directories
• FTP Anonymous Access Allowed
• Checks for Badly Configured Proxy Servers
• Checks for Weak SNMP Community Strings
• Finds Weak SSL Cyphers

Conclusions

Web applications achieve out to a larger,
less-trusted user base than legacy client-server
applications, and yet they are more defenseless to
attacks. Many companies are starting to take
initiatives to prevent these types of break-ins. Code
reviews, extensive penetration testing, and
interruption detection systems are just a few ways
that companies are battling a growing problem.
Unfortunately, most of the solutions available today
are using negative security logic (working with a list
of attacks and trying to prevent against them).
Negative security logic solutions can prevent known,
generalized attacks, but are ineffective against the
kind of targeted, malicious hacker activity outlined in
this paper. In this paper, I have demonstrated some
common web application vulnerabilities, their
countermeasures and their criticality. If there is a
consistent message among each of these attacks, the
key to moderate these vulnerabilities is to disinfect
user's input before processing it.

References

[1] OWASP Top 10 Web Application
Vulnerabilities.http://
www.applicure.com/blog/owasp-top-10-
2010

[2] MITRE. Common vulnerabilities and
exposures. http:// cve.mitre.org/cve/, 2007

[3] http://www.acunetix.com/websitesecurity/xs
s/

[4] http://www.codeproject.com/Articles/9378/S
QL-Injection-Attacks-and-Some-Tips-on-
How- to-Prev

[5] http://crypto.stanford.edu/cs155/papers/form
atstring-1.2.pdf

[6] https://www.owasp.org/index.php/Format_st
ring_attack

[7] https://www.golemtechnologies.com/articles
/prevent-xss

